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Abstract—As smart homes grow in popularity, the challenge
of preserving security and privacy while managing network
communications between the IoT devices involved is ever present.
While current solutions include cloud controlled networks, which
ultimately pose privacy risks, and physical smart home hubs,
which introduce a single point of failure, we propose another
option: a virtual smart home hub. In this paper we lay the
groundwork for a system through which users can describe a
smart home configuration with device inputs passed into a secure
multiparty computation, creating a means for automation without
a centralized hub.

Index Terms—secure multiparty computation, Internet of
Things, smart homes

I. INTRODUCTION

Internet of Things (IoT) devices have transcended their
novelty to become household staples for ordinary people [1].
At its core, the purpose of an IoT device is to connect to a
network and exchange information with other devices. When
there are multiple such devices with dedicated functionality
interacting within a home, usually in such a way that they
change states automatically and can be remotely controlled,
we consider it a “smart home” [2]. The modern smart home
typically has two ways of creating a network of connections
between IoT devices: either by using a dedicated smart home
hub, or by delegating smart home tasks to the cloud [3].

A cloud-controlled network presents a variety of security
and privacy concerns. It is possible for an IoT cloud manage-
ment system to execute commands without checking whether
the sender has permission to make that request and likewise
execute state transitions that may not be allowed [4]. Both of
these aspects make the network vulnerable to remote attacks.
Aside from this, there are inherent privacy concerns with using
a cloud service provider. By entrusting a third party with their
data, users rely on the service provider to both control who
has access to it and manage their data with proper security
measures. While there are laws put in place to regulate cloud
service providers, data in the cloud is often stored in various
physical locations, making it difficult to monitor if these
policies are upheld [5]. Even more, IoT networks solely based
in the cloud are not always practically feasible. A key trait
of smart homes is that the devices have an internal network
through which they can interact with one another [2]. However,

it is possible for certain IoT devices to not have Wi-Fi access
or cloud connecting capabilities [3], [4] so a cloud controlled
IoT network may still require a physical hub.

In many ways, having an IoT network managed by a phys-
ical smart home hub mitigates these risks. A physical smart
home hub typically relies on protocols that do not require Wi-
Fi, like Zigbee and Z-Wave, to manage an IoT network. This
alone makes the traffic in such a network less prone to security
risks as it requires an attacker to be in close proximity to the
home [6]. Such networks are still vulnerable to attacks [7],
[8], but in eliminating the need for cloud connectivity to
automate device operations, the security risks of such a system
are comparatively reduced. Still, having a physical hub be
solely responsible for controlling an IoT network introduces
new vulnerabilities: the physical hub becomes a single point
of failure. If the hub is corrupted, either accidentally or
maliciously, the entire IoT network is immediately at risk.

Existing literature on smart home networks often either
highlights approaches for addressing security risks in current
physical hub and cloud based IoT networks [3], [4], [6],
[9] or else suggests ways in which the functional design
of IoT networks can be improved [10], [11]. In this paper,
however, instead of iterating on previously proposed network
setups, we present a novel framework for a network between
IoT devices that does not rely on a centralized management
system. Our approach is centered on the premise that, through
secure multiparty computation, each IoT device can directly
communicate with other devices it depends on in the network,
only accessing the data these other devices transmit in an
encoded form. Thus, we present a system through which
inter-device communication and traditional if-this-then-that
automation can occur without a hub.

II. BACKGROUND

A. Smart Homes

The modern smart home is built on a network of individual
IoT devices that physically interact with the home. This net-
work can include anything from smart light bulbs to security
cameras, but ultimately also extends to other devices that join
the household network including smart phones and routers.
While perhaps not as essential to the underlying functionality
of a smart home, one key smart home feature is the ability
to control devices in the home remotely, with mobile apps978-1-6654-7345-3/22/$31.00 ©2024 IEEE
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Fig. 1. On the left, we see a smart home setup wherein the cloud relies on
a hub to communicate with IoT devices. On the right, we see our proposed
framework in which no physical hub or cloud management service is required.

sometimes considered to be central actors in a smart home
system [4]. Another defining trait is that communications
between IoT devices are managed so devices can change
states based on direct requests as well as changes in the
environment. Controlling the execution of these state changes
and ensuring the appropriate information is transmitted is an
essential function of smart home hubs.

As shown in Figure 1, the actual configuration of a smart
home network can potentially involve a physical hub that
serves as an intermediate connection between IoT devices and
the cloud, but it is also feasible for devices to directly connect
to the cloud itself. In such a set-up, the physical hub does not
really function as the “hub” for the IoT network, but rather
sends data to the cloud which actually controls the IoT devices
and automates their state changes [4]. One could also remove
the involvement of the cloud service in the left half of Figure 1
and opt for an IoT network where the physical hub takes on
these automation and management roles instead. Our proposal
is to eliminate both entirely, as seen on the right hand side.

A smart home hub not only coordinates communication
between devices, but also controls what devices are added
or removed from the network, monitors these devices, and
automates their operation. On a deeper level, it identifies what
devices connect to it and what information each device needs
from the rest of the network. In terms of automation, each IoT
device outputs different data, and through a set of conditional
statements, the smart home hub determines if any device
connected to it should change states. It also resolves potential
conflicts that occur as some rules resulting from dependencies
between devices may inherently negate each other [11].

B. Secure Multiparty Computation

At the core of our framework is the notion of secure
multiparty computation (MPC), through which we consider
each IoT device a party in a distributed computation. MPC
provides the structure by which parties can pass in inputs
to some secure joint computation and receive their respective
outputs without directly accessing the original inputs from the
other parties. Aside from the fact that the only information
each party obtains from the computation is its respective
output, there are other criteria that define secure multiparty

computation. A distributed computation is only considered
secure if the outputs are correct and guaranteed to be received
accordingly and inputs of corrupt and honest parties are
selected independently. Moreover, corrupt parties should not
receive outputs if honest parties do not and vice versa [12].

There are many variations of MPC, largely dependent on the
nature of the adversaries involved. One type of threat model is
based on semi-honest adversaries, also referred to as “honest
but curious”. In this setup, while the corrupt parties attempt to
access private data, they do not deviate from the protocol at all.
Conversely, a model based on malicious adversaries operates
under the notion that corrupt parties can randomly deviate
from the protocol. Similar to this are covert adversaries, which
may also deviate from the protocol but only have a certain
probability of being detected. If undetected, such adversaries
can potentially gain access to the inputs of other parties [12].

While we use secure multiparty computation in the context
of smart homes, it is also important to note that it has applica-
tions in a wide range of fields [12]. For example, MPC can be
used for secure data analysis. The Boston Women’s Workforce
Council implemented MPC to quantify the gender pay-gap of
employees without exposing their personal information [13].
It also has applications in emerging technologies as in the case
of Duality, a program that uses MPC to allow data owners to
give machine learning model developers the ability to train
their models, with each party not knowing the details of the
information they did not provide in the transaction [14].

III. SYSTEM OVERVIEW

We outline our framework for running a MPC computation
on an inputted smart home configuration below. All code
referenced can be found here: https://github.com/spacela
b-ccny/virtual-hub.

A. Threat Model

Our framework operates under the assumption that after
an initial trusted party (e.g. the user setting up the initial
smart home configuration files on each device) defines the
parameters of the network and gives each device access to the
MPC computation file, none of the devices are considered to
be “trusted”. Instead we employ a semi-honest threat model
in which we consider each party to have the potential to
maliciously try to retrieve data from other parties while still
adhering to the defined protocol. We expect a corrupt party to
try to obtain information about other parties’ inputs through
data leakage in the distributed computation, but likewise
assume adversaries to be passive, meaning they cannot alter
transmitted data. In this scenario we assume a stronger model,
like malicious adversaries, is unnecessary because we believe
the user could potentially detect misbehavior out-of-band.

Additionally, we make the assumption that the parties
cannot be fully trusted on the basis that IoT devices themselves
present potential security and privacy threats. As presented in
Ren et al.’s study on 81 different IoT devices, 72 of the 81
devices sent data to external parties besides their manufactur-
ers. While a significant portion of those parties were meant

https://github.com/spacelab-ccny/virtual-hub
https://github.com/spacelab-ccny/virtual-hub
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Fig. 2. For initial set-up, we pass an input XML file into a program that
processes the tags and generates a file to run the computation.

for computing support, certain devices also sent information
to third party advertising and analytic companies [1]. We thus
consider any external communication that occurs between an
IoT device and the internet to be a vulnerability.

B. Framework Outline

To address security and privacy concerns while avoiding
the use of unnecessary additional hardware, we suggest the
notion of a virtual smart home hub. In our proposed set-up,
each device is able to communicate directly with other devices
in the home and automate its own tasks accordingly without
a designated hub managing these interactions. Through the
use of MPC, an individual IoT device can input data to
the network without gaining access to the information other
devices are inputting and receive a signal indicating whether
or not it should change states based on a secure computation
that occurs. In our case, this computation is a series of
“if” statements (commonly used in IoT automations [11]) to
compare the current states of each device to certain thresholds
and see if device states must be altered accordingly.

We begin with a smart home configuration file; in our
case we use an XML file where a user can define various
elements with various attributes corresponding to the appropri-
ate headers (e.g. <deviceName> fan <\deviceName>).
This file will be filled in by an initial trusted party: the
owner of the house setting up the network on their phone,
for example. It does not include inputs of the current state of
each device, but rather is meant to provide information about
what devices are connecting to the network, how many inputs
they will pass into our computation, and how these devices
depend on one another. For instance, this file might describe
that there is both a fan and a thermostat in the network, with
the fan inputting if it is on or off and the thermostat inputting
the room’s temperature. It would also contain the relationship
between these devices without including any actual numerical
values. In this example, it would describe that if the thermostat
indicates a certain temperature is exceeded, the fan should
change states. The fan would later input what state it should
change to and the temperature threshold value needed for it to
change states. As seen in Figure 2, once the XML file is filled
out, it is processed by a Python script that generates another
Python file with the corresponding comparisons necessary to
automate the states of devices in the network.

As shown in Figure 3, along with the initial configuration
file, we also assume the user creates individual configuration
files that correspond to each device and contain information
about the device state. These individual configuration files
have the same structure as the initial configuration file, but
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Fig. 3. Using the Python script generated from the initial configuration file,
each device processes its own configuration file and runs the computation,
updating its configuration file accordingly.

each device’s individual configuration file contains the nu-
merical values relevant to that device. For example, the fan’s
configuration file would include the temperature threshold
values required for it to turn on but not the temperature
threshold values required for the blinds to close. These files
are then processed by a script which runs locally on the
device (“generate command.py” in Figure 3) that extracts the
numerical values and writes them as command line arguments
for the computation file executable.

Once the arguments are passed into the computation
(through “command.sh” in Figure 3) and it is executed,
each device receives one output per state change it might
incur if certain conditions are met. These outputs each either
correspond to the existing value of one of the input states
(meaning no change is necessary) or they reflect the value
one of the input states should change to. A script is run to
process these results and update values accordingly.

As described above, our design operates under the assump-
tion that each device in the network has the capability to do
the necessary computations independently. We consider the
logistics of integrating our framework with the software of an
IoT device to be outside the scope of this project. We similarly
will not be taking into account the process of how these IoT
devices might connect to the internet without a designated
centralized hub in our design, but instead operate under the
assumption that this functionality could be implemented at a
later stage, for instance by adding a router as an IoT device
to the network, as future work.

C. Security Analysis

Our Python code uses the MPyC package, which allows
multiple parties to connect and provide inputs to a compu-
tation, but encodes these inputs in such a way that, while
each party has access to all the inputs to run the computa-
tion, none of the parties knows what these values actually
are. In particular, MPyC implements MPC through Shamir’s
threshold secret sharing scheme and securely operates when
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Fig. 4. Input Config. 1. The fan changes states based on the temperature read
by the thermostat.
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Fig. 5. Input Config. 2. The fan changes states based on input from the blinds
and the thermostat while the blinds only depend on the thermostat.

the adversaries are passive and in control of less than 50%
of the parties [15]. This mitigates the risks discussed in our
threat model, ensuring secure computation if less than half of
the parties are corrupted.

Because the initial configuration file uploaded to each device
contains no numerical information and the individual config-
uration files only contain numerical values for their respective
devices, we further address the risk of a potentially corrupt
device gaining any information about the state of devices in
the rest of the network. In this way, apart from the initial set-
up, the network can operate under the assumption that parties
may be corrupted and still automate processes securely.

IV. EVALUATION

We simulate our framework using two Raspberry Pi 4B
devices and a Raspberry Pi 3 to reflect the limited computing
capabilities an IoT device might have. Due to budget and re-
source constraints, rather than implement our virtual hub using
actual IoT devices, we seek instead to establish feasibility on
IoT-class hardware. In our testing, device number 3 was always
simulated using the Raspberry Pi 3.

To test our setup, we use various initial configuration files
meant to reflect realistic device setups one might have in a
smart home. We ultimately ran the computation 100 times on
4 different smart home configurations (see Figures 4 to 7) with
varying degrees of dependency between the devices. Each time
before the computation is re-run, we process the configuration
files and alter input values with a 33% chance to reflect how,
in a real smart home, devices can be manually adjusted and
environmental factors, like room temperature, may also change
between computations. This probability value was arbitrarily
selected to ensure that a fair portion of the runs involves some
sort of state change. As the computation is automated and
device configuration files update, we are able to better simulate
the dynamic nature of a smart home IoT network.

Using MPyC, we establish a number of bidirectional TCP/IP
connections in our local network that directly corresponds to
the number of devices. According to the documentation, for m
devices involved in the computation, this result is exactly

(
m
2

)
[15]. So for 3 devices, we make a total of 3 TCP connections.

on/off on/offMotion detected/
not detected

Fig. 6. Input Config. 3. The light turns on when motion is detected, and the
camera turns on if both motion is detected and the light is on. If motion is no
longer detected, and both the light and camera are on, the camera turns off.
If the light is on but no motion is detected and the camera is off, it turns off.

on/off humiditytemp

Fig. 7. Input Config. 4. The air conditioner depends on input from both the
thermostat and the hygrometer.

We measured statistics only for the process in which the
actual multiparty computation occurs. For each device in-
volved in a given computation we measured the runtime of the
process, bytes sent in the transaction, as well as the memory
metrics of Resident Set Size (RSS) and the Unique Set Size
(USS). The purpose of including both was to highlight the
distinction between memory that is both used by the process
and shared between processes (as captured by RSS) and
memory that is solely tied to the running process that would
be freed if it was terminated (as captured by USS) [16].

A. Results

As seen in Table 1, we observe that all of our simulations re-
sulted in under 1MB of data being transmitted by each device.
Thus, under our framework, the network does not experience
significant overhead in terms of bandwidth consumption. We
note that, by design, even if the device’s conditions to change
states are not met, the device’s current state value is output for
that threshold comparison. So, in a given configuration, each
device consistently sends out a fixed number of bytes

The duration of the computation is also relatively low, with
times always under 0.6 seconds on average. This suggests that
in a real-world setting IoT devices under this framework could
transmit data between themselves and determine whether or
not to change states with relatively low latency. As such, the
latencies of our results would likely be negligible from the
user’s perspective. However, this may change in configurations
with additional devices and more complex dependencies.

We also note that the RAM usage, both RSS and USS,
is fairly low, with RSS peaking around 38MB for all of our
simulations. For reference, a Nest Thermostat has 256 MB
of memory [17] and some IoT devices have far more, like
the Samsung Smart Fridge which has 2.5 GB of RAM [18],
both of which greatly exceed the maximum RAM usage of
our computation. Thus, it is reasonable to assume our secure
multiparty computation would be able to run on existing
IoT devices. Ultimately, this supports the notion that our
proposed framework in which IoT devices individually run
the computations necessary for secure multiparty computation



TABLE I
SIMULATION RESULTS FOR DIFFERENT SMART HOME CONFIGURATIONS.

Config. Device Avg. Time (s) Avg. RSS (MB) Avg. USS (MB) Bytes Sent
1 1 0.15±0.135 37.44±.011 26.86±.003 108

2 0.03±0.037 37.44±.003 27.23±.003 18
2 1 0.42±0.133 37.55±.044 26.93±.003 4812

2 0.42±0.135 37.37±.024 27.02±.003 4578
3 0.41±0.129 24.81±.024 19.40±.003 4560

3 1 0.54±0.184 37.60±.002 27.01±.003 8646
2 0.54±0.18 27.09±.027 27.09±.003 8898
3 0.54±0.172 24.88±.029 19.46±.004 8898

4 1 0.47±0.175 37.48±.053 26.91±.003 4758
2 0.47±0.175 37.24±.005 27.00±.003 4470
3 0.45±0.167 24.78±.016 19.38±.003 4524

to allow them to automate state changes is not necessarily
restricted by computing abilities of the devices. This suggests
that we could potentially extend this system for a real-world
IoT network without a hub.

V. FUTURE WORK

Since we did not have access to a full test bed of devices,
we believe future work can build upon our setup by increasing
the amount of devices involved in testing the framework. As
seen in our results, we expect that increasing the number
of devices and dependencies involved may increase both the
latency and bytes sent per device in the computation. Still,
more testing is required to determine exactly how this might
scale as the network grows and if there is some threshold at
which adding more devices and more complex dependencies
under this framework becomes detrimental to overall opera-
tion. Moreover, we believe it would be beneficial to study the
human interaction aspect of our model, such as whether or not
users would see an increase in latency between state changes
of devices in a negative light if they know the framework as
a whole mitigates security threats. Future iterations could also
extend our framework to incorporate other features of a smart
home hub, like device identity management [4].

VI. CONCLUSION

Through this paper we suggest a framework in which one
could develop a network between IoT devices that would not
require a centralized hub to manage them. In introducing a
system through which secure multiparty computation can be
implemented to mitigate security risks while still allowing state
changes to be automated, we have shown that theoretically, a
decentralized IoT network is realizable. Moreover, our results
highlight that our framework has the potential to be imple-
mented on actual IoT devices without incurring unreasonable
runtimes and RAM usage. We expect future work can build on
the structure we introduced, developing a virtual hub network
where individual IoT devices not only automate their own state
changes but also jointly determine whether to add or remove
devices and monitor traffic between devices.
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